Implicações Clínicas Envolvidas no Processo de Fotopolimerização da Resina Composta
DOI:
https://doi.org/10.21270/archi.v12i1.5476Palavras-chave:
Resinas Compostas, Polimerização, Luzes de Cura DentáriaResumo
Introdução: Devido à grande demanda por tratamentos mais conservadores e estéticos, os compósitos a base de resina composta fotoativados começaram a ser amplamente utilizados nos procedimentos restauradores e os fotopolimerizadores, principalmente do tipo diodo emissor de luz (LED), tornaram-se indispensáveis nos consultórios odontológicos, visto que são essenciais para o processo de fotopolimerização desses compósitos. Objetivo: Este trabalho consiste em uma revisão da literatura que objetiva discorrer acerca das implicações clínicas envolvidas no processo de fotopolimerização dos compósitos dentais, descrevendo fatores que podem ter influência na polimerização dos materiais resinosos no tratamento odontológico. Material e método: Realizou-se uma busca nas bases de dados eletrônicas: PubMed, SciELO, BVS e Google Acadêmico, através do rastreio de 40 artigos publicados entre 2005 e 2020, além de um livro considerado proveitoso para o conteúdo deste estudo. Resultados: A fotopolimerização dos materiais resinosos está relacionada à vários parâmetros, como a intensidade e comprimento de onda da luz emitida pelo aparelho fotopolimerizador, tempo de exposição à luz, volume de material restaurador a ser fotopolimerizado, quantidade e tipo de fotoiniciador presente no material, tipo de partícula de carga presente, técnica de fotopolimerização e a cor e grau de translucidez da resina utilizada. Tais fatores são capazes de afetar as propriedades mecânicas e funcionais de restaurações em resina composta. Conclusão: É fundamental que os cirurgiões-dentistas conheçam as implicações clínicas envolvidas no processo de fotopolimerização dental e busquem maneiras para corrigir condutas que prejudiquem a etapa de fotoativação do material restaurador, para otimizar essa etapa clínica e desenvolver protocolos confiáveis, bem como tratamentos restauradores bem-sucedidos.
Downloads
Referências
Schneider AC, Mendonça MJ, Rodrigues RB, Busato PMR, Camilotti V. Inlfuência de três modos de fotopolimerização sobre a microdureza de três resinas compostas. Polímeros. 2016;26:37-42.
Silva FJV, Silva EL, Januário MVS, Vasconcelos MG, Vasconcelos RG. Técnicas para reduzir os efeitos da contração de polimerização das resinas compostas fotoativadas. Salusvita. 2017;36(1):187-203.
Assaf C, Fahd JC, Sabbagh J. Assessing dental light-curing units’ output using radiometers: a narrative review. J Int Soc Prev Community Dent. 2020;10(1):1-8.
André CB, Nima G, Sebold M, Giannini M, Price RB. Stability of the light output, oral cavity tip accessibility in posterior region and emission spectrum of light-curing units. Oper Dent. 2018;43(4):398-407.
Price RBT. Light curing in dentistry. Dent Clin North Am. 2017;61(4):751-78.
Shimokawa C, Turbino ML, Giannini M, Braga RR, Price RB. Effect of curing light and exposure time on the polymerization of bulk-fill resin-based composites in molar teeth. Oper Dent. 2020;45(3):E141-E155.
Lee HM, Kim SC, Kang KH, Chang NY. Comparison of the bonding strengths of second- and third-generation light-emitting diode light-curing units. Korean J Orthod. 2016;46(6):364-71.
Ajaj RA, Nassar HM, Hasanain FA. Infection control barrier and curing time as factors affecting the irradiance of light-cure units. J Int Soc Prev Community Dent. 2018;8(6):523-28.
Cadenaro M, Maravic T, Comba A, Mazzoni A, Fanfoni L, Hilton T, et al. The role of polymerization in adhesive dentistry. Dent Mater. 2019;35(1):e1-e22.
Price RB, Ferracane JL, Shortall AC. Light-curing units: a review of what we need to know. J Dent Res. 2015;94(9):1179-86.
Hamerski F, Celant RB, Mello AMD, Mello FAZ. Resina composta: fotopolimerização relacionada com microinfiltração. Gestão & Saúde. 2015;13:1-10.
Sassi JF, Batista AR, Ciccone-Nogueira JC, Corona SAM, Palma-Dibb RG. Influence of light-curing unit systems on shear bond strength and marginal microleakage of composite resin restorations. Mater Res. 2008;11(1):69-73.
Pires GBA, Pires GB, Macêdo DR, Mendonça JS. Avaliação in vitro da infiltração marginal de restaurações de classe V com diferentes combinações de resinas compostas e aparelhos fotopolimerizadores. RBPS. 2009;11(1):40-45.
Scariot RC, Calza JV, Casali JL. Abordagem dos cirurgiões dentistas em relação a fotopolimerização de resinas compostas. J Oral Investig. 2017;6(1):38-49.
Omidi BR, Gosili A, Jaber-Ansari M, Mahdkhah A. Intensity output and effectiveness of light curing units in dental offices. J Clin Exp Dent. 2018;10(6):e555-e560.
de Oliveira DC, Rocha MG, Gatti A, Correr AB, Ferracane JL, Sinhoret MA. Effect of different photoinitiators and reducing agents on cure efficiency and color stability of resin-based composites using different LED wavelengths. J Dent. 2015;43(12):1565-72.
Guimarães GF, Marcelino E, Cesarino I, Vicente FB, Grandini CR, Simões RP. Minimization of polymerization shrinkage effects on composite resins by the control of irradiance during the photoactivation process. J Appl Oral sci. 2018;26:e20170528.
Reis A, Loguercio AD. Materiais dentários diretos: dos fundamentos à aplicação clínica. São Paulo: Santos; 2009.
Caldarelli PG, Beltrani FC, Pereira SK, Cardoso SA, Hoeppner MG. Aparelhos fotopolimerizadores: evolução e aplicação clínica – uma revisão da literatura. Odontol Clín-Cient. 2011;10(4):317-21.
Gritsch K, Souvannasot S, Schembri C, Farge P, Grosgogeat B. Influence of light energy and power density on the microhardness of two nanohybrid composites. Eur J Oral Sci. 2008;116(1):77-82.
Tongtaksin A, Leevailoj C. Battery charge affects the stability of light intensity from light-emitting diode light-curing units. Oper Dent. 2017; 42(5):497-504.
Price RB, Shortall AC, Palin WM. Contemporary issues in light curing. Oper Dent. 2014;39(1):4-14.
Shimokawa C, Sullivan B, Turbino ML, Soares CJ, Price RB. Influence of emission spectrum and irradiance on light curing of resin-based composites. Oper Dent. 2017;42(5):537-47.
Grohmann CVS, Soares EF, Souza-Junior EJC, Brandt WC, Puppin-Rontani RM, Geraldeli S, et al. Influence of different concentration and ratio of a photoinitiator system on the properties of experimental resin composites. Braz Dental J. 2017;28(6):726-30.
Karacolak G, Turkun LS, Boyacioglu H, Ferracane JL. Influence of increment thickness on radiant energy and microhardness of bulk-fill resin composites. Dent Mater J. 2018;37(2):206-13.
Par M, Repusic I, Skenderovic H, Milat O, Spajic J, Tarle Z. The effects of extended curing time and radiant energy on microhardness and temperature rise of conventional and bulk-fill resin composites. Clin Oral Investig. 2019; 23(10):3777-788.
Zorzin J, Maier E, Harre S, Fey T, Belli R, Lohbauer U, et al. Bulk-fill resin composites: polymerization properties and extended light curing. Dent Mater. 2015;31(3):293-301.
Soares CJ, Rodrigues MP, Oliveira LRS, Braga SSL, Barcelos LM, Silva GR, et al. An evaluation of the light output from 22 contemporary light curing units. Braz Dent J. 2017;28(3):362-71.
Corciolani G, Vichi A, Davidson CL, Ferrari M. The influence of tip geometry and distance on light-curing efficacy. Oper Dent. 2008;33(3):325-31.
Konerding KL, Heyder M, Kranz S, Guellmar A, Voelpel A, Watts DC, et al. Study of energy transfer by different light curing units into a class III restoration as a function of tilt angle and distance, using a MARC Patient Simulator (PS). Dent Mater. 2016;32(5):676-86.
Archegas LR, de Menezes Caldas DB, Rached RN, Soares P, Souza EM. Effect of ceramic veneer opacity and exposure time on the polymerization efficiency of resin cements. Oper Dent. 2012;37(3):281-9.
Strassler HE. Successful light curing- not as easy as it looks. Oral Health. 2013;103(7):18-26.
McAndrew R, Lynch CD, Pavli M, Bannon A, Milward P. The effect of disposable infection control barriers and physical damage on the power output of light curing units and light curing tips. Br Dent J. 2011;210(8):E12.
Sword RJ, Do UN, Chang JH, Rueggeberg FA. Effect of curing light barriers and light types on radiant exposure and composite conversion. J Esthet Restor Dent. 2016;28(1):29-42.
Catelan A, de Araújo LS, da Silveira BC, Kawano Y, Ambrosano GM, Marchi GM, et al. Impact of the distance of light curing on the degree of conversion and microhardness of a composite resin. Acta Odontol Scand. 2015;73(4):298-301.
Tauböck TT, Feilzer AJ, Buchalla W, Kleverlaan CJ, Krejci I, Attin T. Effect of modulated photo-activation on polymerization shrinkage behavior of dental restorative resin composites. Eur J Oral Sci. 2014;122(4):293-302.
Shimokawa CAK, Bengston CRG, Youssef MN, Turbino ML. Efeito da redução da intensidade de luz inicial na polimerização de uma resina composta fotoativada com luz halógena e distanciamento da ponta ativadora. RPG Rev pós-grad. 2012;19(2):64-8.
Thomé T, Steagall-Jr W, Tachibana A, Braga SRM, Turbino ML. Influence of the distance of the curing light source and composite shade on hardness of two composites. J Appl Oral Sci. 2007;15(6):486-91.
Price RB, Labrie D, Whalen JM, Felix CM. Effect of distance on irradiance and beam homogeneity from 4 light-emitting diode curing units. J Can Dent Assoc. 2011;77:b9.
Davidovich L. Os quanta de luz e a ótica quântica. Rev Bras Ens Fís. 2015;37(4):4205-12.
Albino LGB, Rodrigues JA, Kawano Y, Cassoni A. Knoop microhardness and FT-Raman evaluation of composite resins: influence of opacity and photoactivation source. Braz Oral Res. 2011;25(3):267-73.
Ilie N. Sufficiency of curing in high-viscosity bulk-fill resin composites with enhanced opacity. Clin Oral Investig. 2019;23(2):747-55.
Mota MS, Medeiros NI, Vasconcelos MG, Vasconcelos RG. Odontologia atual: fundamentação teórica e aspectos clínicos das resinas bulk fill. Odontol Clín.-Cient. 2019;18(2):97-102.