Study of the Vickers hardness and corrosion behavior of experimental Ti-Mo alloy in dental office bleaching agents

Autores/as

  • Maria Cristina Rosifini Alves Rezende https://orcid.org/0000-0002-1327-9667
  • Juliana Caires Felipe
  • Roberto Zenhei Nakazato
  • Conceição Aparecida Matsumoto Dutra
  • André Luiz Reis Rangel
  • João Pedro Justino de Oliveira Limírio
  • Ana Paula Rosifini Alves Claro

DOI:

https://doi.org/10.21270/archi.v6i10.2249

Resumen

At present, titanium and its alloys stand out for their mechanical and biological properties. Vickers hardness and the effect of 15%, 22% and 35% hydrogen peroxide (H2O2) on Ti-10Mo alloy corrosion were evaluated. A conventional double-walled glass cell was used for thermostatization. As reference electrode was used the Ag/AgCl (s)/KClsat and as auxiliary electrode graphite stick. The work electrodes consisted of Ti-10Mo cylinders embedded in polyethylene, with electrical contact by brass wire and silver paint on one end. The electrolyte used was H2O2 in concentrations of 15%, 22% and 35% and potentiodynamic measurements were recorded. The Vickers hardness was evaluated before the treatment using Vickers penetrator under load of 1000g and dwell time of 10s / measurement separately. The results showed an increase in the corrosion values in direct relation with the increase of the H2O2 concentration. At 35% concentration, at constant current of ~ 1.0V the alloy did not passivate, characterizing high corrosion rate. At the concentrations of 15% and 22% the results showed a tendency to pseudopassivation, with release of TiO2 and part of the product of the corrosion becoming semi-adherent to the surface of the working electrode and another part passing through the middle, characterizing intermediate corrosion velocity. It was concluded that higher H2O2concentrations produced higher electrochemical corrosion.

Descriptors: Titanium; Alloys; Surface Properties; Corrosion; Tooth Bleaching Agents.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Alves Rezende MC, Alves AP, Codaro EN, Dutra CA. Effect of commercial mouthwashes on the corrosion resistance of Ti-10Mo experimental alloy. J Mater Sci Mater Med. 2007;18(1):149-54.

de Oliveira JA, do Amaral Escada AL, Alves Rezende MC, Mathor MB, Alves Claro AP. Analysis of the effects of irradiation in osseointegrated dental implants. Clin Oral Implants Res. 2012;23(4):511-4.

Escada AL, Machado JP, Schneider SG, Rezende MC, Claro AP. Biomimetic calcium phosphate coating on Ti-7.5Mo alloy for dental application. J Mater Sci Mater Med. 2011; 22(11):2457-65.

Narita K, Niinomi M, Nakai M. Effects of micro- and nano-scale wave-like structures on fatigue strength of a beta-type titanium alloy developed as a biomaterial. J Mech Behav Biomed Mater. 2014;29:393-402.

Niinomi M. Fatigue performance and cyto-toxicity of low rigidity titanium alloy, Ti-29Nb-13Ta-4.6Zr. Biomaterials. 2003;24(16):2673-83.

Oliveira NT, Guastaldi FP, Perrotti V, Hochuli-Vieira E, Guastaldi AC, Piattelli A, Iezzi G. Biomedical Ti-Mo alloys with surface machined and modified by laser beam: biomechanical, histological, and histometric analysis in rabbits. Clin Implant Dent Relat Res. 2013;15(3):427-37.

Zhou YL, Luo DM. Microstructure and mechanical properties of Ti–Mo alloys cold-rolled and heat treated. Mater. Charact. 2011; 62, 931–37.

Oliveira NTC, Aleixo G, Caram R, Guastaldi AC. Development of Ti–Mo alloys for biomedical applications: microstructure and electrochemical characterization. Mater Sci Eng A. 2007: 452-3,727-31.

Ho WF, Ju CP, Lin JH. Structure and properties of cast binary Ti-Mo alloys. Biomaterials. 1999; 20(22):2115-22.

Serra G, Morais L, Elias CN, Semenova IP, Valiev R, Salimgareeva G, Pithon M, Lacerda R. Nanostructured severe plastic deformation processed titanium for orthodontic mini-implants. Mater Sci Eng C Mater Biol Appl. 2013; 33(7):4197-202.

Cardoso FF, Ferrandini PL, Lopes ES, Cremasco A, Caram R. Ti-Mo alloys employed as biomaterials: Effects of composition and aging heat treatment on microstructure and mechanical behavior. J Mech Behav Biomed Mater. 2013; 32C:31-8.

Tane M, Akita S, Nakano T, Hagihara K, Umakoshi Y, Niinomi M et al. Peculiar Elastic Behavior of Ti-Nb-Ta-Zr Single Crystals. Acta Mater. 2008; 56: 2856-63.

Jung TK, Semboshi S, Masahashi N, Hanada S. Mechanical properties and microstructures of β Ti-25Nb 11Sn ternary alloy for biomedical applications. Mater Sci Eng C Mater Biol Appl. 2013 ;33(3):1629-35.

Guo Y, Chen D, Lu W, Jia Y, Wang L, Zhang X. Corrosion resistance and in vitro response of a novel Ti35Nb2Ta3Zr alloy with a low Young's modulus. Biomed Mater. 2013; 8(5):055004.

Correa DR, Vicente FB, Donato TA, Arana-Chavez VE, Buzalaf MA, Grandini CR. The effect of the solute on the structure, selected mechanical properties, and biocompatibility of Ti-Zr system alloys for dental applications. Mater Sci Eng C Mater Biol Appl. 2014; 34:354-9.

Gill P, Munroe N, Pulletikurthi C, Pandya S, Haider W. Effect of manufacturing process onthe biocompatibility and mechanical properties of Ti30Ta alloy. J Mater Eng Perform. 2011; 20(4):819-23.

Alves Rezende MCR, Capalbo BC, Louzada MJQ, Rangel ALR, Cintra LA, Oliveira JAG, Lisboa Filho PN, Wada CM, Alves Claro APR. Osseointegration of Ti-30Ta implants without primary stability: effect of tranexamic acid. Mater Sci Forum. 2016;869:918-23.

Wada CM, Rangel ALR, Souza MA, Almeida RS, D´Avila MA, Alves Claro APR, Alves Rezende MCR. Surface Modification of Ti-30Ta Alloy by Electrospun PCL Deposition. Mater Sci Forum. 2016;869:930-4.

Fais LM, Fernandes-Filho RB, Pereira-da-Silva MA, Vaz LG, Adabo GL. Titanium surface topography after brushing with fluoride and flouride free toothpaste simulating 10 years of use. J Dent. 2012; 40(4):265-75.

Haywood VB, Heymann HO. Nightguard vital bleaching. Quintessence Int. 1989; 20(3):173-6.

Singh VP, Uppoor AS, Nayak DG, Shah D. Black triangle dilemma and its management in esthetic dentistry. Dent Res J (Isfahan). 2013; 10(3):296-301.

Wang W, Zhu Y, Li J, Liao S, Ai H. Efficacy of cold light bleaching using different bleaching times and their effects on human enamel. Dent Mater J. 2013; 32(5): 761-6.

Basson RA, Grobler SR, Kotze TJ, Osman Y. Guidelines for the selection of tooth whitening products amongst those available on the market. SADJ. 2013; 68(3):122-9.

Alonso De La Peña V, Rodriguez Carreira A, Corral Aneiros R, López Ratón M, Guitián Rivera F. A study of in vivo degradation of two vital home bleaching gels. Dent Mater J. 2013; 32(4): 654–58.

Al-Salehi SK, Hatton PV,Johnson A, Cox AG, McLeod C. The effect of hydrogen peroxide concentration on metal ion release from dental casting alloys. J Oral Rehabil. 2008 ; 35(4):276-82.

Wang J, Qiao GY. The effect of hydrogen peroxide on the electrochemical corrosion properties and metal ions release of nickel-chromium dental alloys. Shanghai Kou Qiang Yi Xue. 2013; 22(2):137-41.

Takemoto S, Hattori M, Yoshinari M, Kawada E, Oda Y. Discoloration of titanium alloy in acidic saline solutions with peroxide. Dent Mater J. 2013; 32(1):19–24.

Rosa JL, Nakazato RZ, Scheneider SG, Alves Claro APR, Alves Rezende MCR. Wettability behavior of nanotubular TiO2 intended for biomedical applications. Arch Health Invest. 2014; 3(5):43-7.

Saini M, Singh Y, Arora P, Arora V, Jain K. Implant biomaterials: A comprehensive review. World J Clin Cases. 2015; 3(1): 52-7.

Assis Assis SL, Wolynec S, Costa I. Corrosion characterization of titanium alloys by electrochemical techniques. Electrochimica Acta. 2006; 51:1815-9.

Noguchi T, Takemoto S, Hatton M, Yoshinari M, Kawada E, Oday Y. Discoloration and dissolution of titanium and titanium alloys with immersion in peroxide- or fluoride-containing solutions. 2008; 27(1):117-23.

Mohsen CA. The effect of bleaching agents on the surface topography of ceramometal dental alloys. J Prosthodont. 2010; 19(1):33-41.

Nakamura K, Yamada Y, Takada Y, Mokudai T, Ikai H, Inagaki R et al. Corrosive effect of disinfection solution containing hydroxyl radicals generated by photolysis of H2O2 on dental metals. Dental Mater J. 2012; 31(6):941-6

Yokoyama K, Ogawa T, Fujita A, Asaoka K, Sakai J. Fracture of Ni-Ti superelastic alloy under sustained tensile load in physiological saline solution containing hydrogen peroxide. J Biomed Mater Res A. 2007; 82(3):558-67.

Xie L, Wang XX, Li J. The corrosion behavior of titanium in hydrogen peroxide solution with various additives. Key Engineer Mater. 2007; 330-332(19):1285-88.

Publicado

2017-10-31

Cómo citar

Alves Rezende, M. C. R., Felipe, J. C., Nakazato, R. Z., Dutra, C. A. M., Rangel, A. L. R., Limírio, J. P. J. de O., & Alves Claro, A. P. R. (2017). Study of the Vickers hardness and corrosion behavior of experimental Ti-Mo alloy in dental office bleaching agents. ARCHIVES OF HEALTH INVESTIGATION, 6(10). https://doi.org/10.21270/archi.v6i10.2249

Número

Sección

Artigos